

ANANDALAYA PERIODIC TEST - 1 Class: XII

M.M: 40 Time: 1 Hour 30 min

General Instructions:

- 1. The question paper consists of 22 questions divided into 3 sections A, B and C
- 2. All questions are compulsory.
- 3. Section A comprises of 10 questions of 1 mark each.
- 4. Section B comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 5. Section C comprises of 6 questions of 3 marks each. Internal choice has been provided in two questions.

SECTION-A

Let set $X = \{1, 2, 3\}$ and a relation R is defined in X as : $R = \{(1, 3), (2, 2), (3, 2)\}$, then (1) 1. minimum ordered pairs which should be added in relation R to make it reflexive and symmetric are $\{(1, 1), (2, 3), (1, 2)\}$ (A) **(B)** $\{(3, 3), (3, 1), (1, 2)\}$ $\{(1, 1), (3, 3), (3, 1), (2, 3)\}$ $\{(1, 1), (3, 3), (3, 1), (1, 2)\}$ (C) (D) Let A and B are matrices of order 3 and |A| = 5, |B| = 3, then |3AB| =_____. 2. (1)405 (A) 45 **(B)** 90 (C) (D) 15 (C) – 9 If $\begin{vmatrix} 2x + 5 & 3 \\ 5x + 2 & 9 \end{vmatrix} = 0$, then x is_____ (A) 13 (B) 9 (1)(D) -13If $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ and $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{n \times p}$ be two matrices then order of $(AB)^T$ _____. (A) $n \times p$ (B) $m \times n$ (C) $m \times p$ (D) $p \times m$ 4. (1)Let $X = \{x^2 : x \in N\}$ and the function $f : N \to X$ is defined by $(x) = x^2, x \in N$. Then this 5. (1)function is injective only (B) not bijective (C) surjective only (D) bijective (A) The matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ is _____. (1)6. (A) Identity matrix **(B)** symmetric matrix (C) Skew- symmetric matrix (D) Scalar matrix The value of $\tan^{-1}\left(\tan\frac{5\pi}{4}\right) =$ _____. (A) $\frac{\pi}{4}$ (B) $\frac{5\pi}{4}$ (1)7. 3π (C) (D) If A and B are matrices of same order, then (AB' - BA') is a 8. (1)(A) skew symmetric matrix **(B)** null matrix (C) symmetric matrix (D) unit matrix 9. The value of $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) =$ _____. (A) $\frac{\pi}{12}$ (B) $\frac{5\pi}{4}$ (C) $\frac{11\pi}{12}$ (1)9π (D) Page 1 of 3

In the following Q.10, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (A) Both A and R are true and R is the correct explanation of A.
- (B) Both A and R are true but R is not the correct explanation of A.
- (C) A is true but R is false.
- (D) A is false but R is true.
- 10. Assertion (*A*): In set $A = \{a, b, c\}$ relation *R* in set *A*, given as $R = \{(a, c)\}$ is transitive. (1) Reason (*R*): A singleton relation is transitive.

SECTION-B

11. Write the following function in the simplest form: $\tan^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}$, $0 < x < \pi$. (2)

Find the value of $tan^{-1}\left\{2sin\left(2\cos^{-1}\frac{\sqrt{3}}{2}\right)\right\}$.

^{12.} If $= \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find the value of α for which $A^2 = B$. (2) **OR** $A = \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix}$, $B = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$ then find the product AB.

- 13. If the co-ordinates of the vertices of an equilateral triangle with sides of length a are (x_1, y_1) , (2) (x_2, y_2) , (x_3, y_3) , then show that $\begin{vmatrix} x_1 & y_1 & 2 \\ x_2 & y_2 & 2 \\ x_3 & y_3 & 2 \end{vmatrix}^2 = 3 a^4$.
- 14. Check whether the relation R defined in the set $A = \{1, 2, 3, 4, 5, 6\}$ as (2) $R = \{(x, y): y = x + 1, x, y \in A\}$ is reflexive or symmetric.
- ^{15.} If $A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$, find k so that $A^2 = 8A + kI$. (2)

(2)

(3)

16. Find non-zero values of x satisfying the matrix equation: $x \begin{bmatrix} 2x & 2 \\ 3 & x \end{bmatrix} + 2 \begin{bmatrix} 8 & 5x \\ 4 & 4x \end{bmatrix} = 2 \begin{bmatrix} x^2 + 8 & 24 \\ 10 & 6x \end{bmatrix}.$

SECTION- C

- 17. If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y. $2X + 3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} ; \qquad 3X + 2Y = \begin{bmatrix} -2 & 2 \\ 1 & -5 \end{bmatrix}$ OR Construct a 3 × 2 matrix whose elements a_{ij} are given by $a_{ij} = \begin{cases} ij - j & i < j \\ \frac{i}{j}, & i = j \\ ii - i, & i > i \end{cases}$ (3)
- 18. Let *N* be the set of all natural numbers and let *R* be a relation on $N \times N$ defined by $(a, b)R(c, d) \Rightarrow ad = bc$ for all $(a, b), (c, d) \in N \times N$. Show that *R* is an equivalence relation on $N \times N$.

19. If
$$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$
, then verify that $A \cdot adjA = |A| \cdot I$ (3)

20. Let *Z* be the set of all integers and *R* be the relation on *Z* defined as $R = \{(a, b); a, b \in Z, and (a - b) \text{ is divisible by 5.}\}$ Prove that *R* is an equivalence relation.
(3)

21. Express the matrix $B = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ as the sum of a symmetric and a skew symmetric matrix. (3)

OR

If $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$, Find $A^2 - 5A + 4I$ and hence find a matrix X such that $A^2 - 5A + 4I + X = 0$

22. Using matrix method, solve the following system of equations: 2x - y + z = 3; -x + 2y - z = -4; x - y + 2z = 1(3)